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Two-dimensional betatron resonances are much more important than their 

simple one-dimensional counterparts and exhibit a strong ‘depdndenc”; on 

the betatron phase advance per cell. This paper enlarges upon a not%, of 

limited distribution, which used a practical definition of “width” in order 

to display these relations in tables. 

A substantial introduction has been added to this note, primarily peda- 

gogical, to explain the tables, and also to encourage a wider capability 

for deriving resonance behavior and wider use of “designer” resonances. 
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Many years ago Don Edwards and I in a fundamental design paper for 

the Doubler argued strenuously against a “cost-saving” reduction of the phase 

advance per cell. To do so we used a table of widths for two-dimensional 

resosnances and pointed to the strong dependence on phase advance. Three 

years ago, following the first Snowmass Summer Study, I enlarged this table 

and refined the phase dependence in a small note of limited distribution, 

because of proposed “great cost-savings”. Following the second Snowmass 

Summer Study, I shifted to non-resonant distortion and “smearing” criteria 
(same purpose) in Distortion Functions, which is a complementary approach to 

resonance theory with a direct numerical relation to performance quality but 

which also contains much of interest for resonances. 

What remains from these efforts, apart from an excellent Doubler, is a 

recurring interest in the table of widths and I have been encouraged to 

insert a short explanation of the numerical methods into the small note and 
give it a wider distribution. 

Resonance theory is n lot of fun, so I could not resist meandering along 

a few of the many fascinating by-ways before explaining the last three hand- 

drawn pages which were the bulk of the small note. 

Resonance Width 

The terms resonance and resonance width are commonly used in physics, 

usually without explanation, but they have a special meaning for betatron 

tune resonances in accelerator rings for which there is no analgous behaviour 

in electrical circuitry. One betatron phenomenon does resemble a normal reso- 

nance - the growth of orbit distortion as the betatron tune approaches an in- 
teger. In this case there is a denominator (sin TV) which approaches zero and 

in electrical terminology this is a very narrow resonance (measured down from 

the peak), but an accelerator operator would find it very wide. Note that for 

any small tune there is a stable beam, but not a useful one, and the tune it- 

self is unmodified. We now contrast this behaviour with “real” resonances. 

First we must distinguish clearly the tune from the tuning. Tune is the 

betatron phase advance per turn, measured in revolutions where the fractional 
part is the significant quantity. There are two tunes, YI, YY, which can be mea- 

sured directly from the beam. Tune varies somewhat with the amplitudes and 

with momentum. Tuning is the setting of tuning quadrupoles, converted to 

tune units by simple formulas. For a well behaved, small beam with no mo- 

mentum error, the tunes follow the tunings. 
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Consider then tuning towards the half-integer. When just below one finds 
that the tune runs ahead of the tuning and reaches l/2 when the tuning is 

slightly less. Coming down from above one again finds the tune running ahead 

to l/2 but this time the tuning is slightly greater than l/2. For a tuning 

between these limits there is no stable beam. In this region the beam is 
represented by a tune of l/2 multiplied by an exponential growth in amplitude 

(a complex phase angle). We use the tuning width of the region where the 

tune is locked to l/2 as a measure of the resonance strength. Note that there 
are no missing tunes, they are just a little crowded on each side of the 
locked region. 

Now let there be a scatter of sextupoles in the ring. We will find a 
locked region at vx = l/3, but in this case the tuning width is proportional to 

the amplitude. (If one uses IO-poles it would be ampa.) One way to quote a 

single tuning width for each resonance is to use a standard amplitude (lcm), 

however if we set vI near l/3 and vary VY we will find another, larger 

resonance when YX t Zvr = integer. 

On a tuning-plot, where 3vx is a vertical line, this two-dimensional 
resonance is a narrow band through (l/3,1/3) with a slope of -2/3. [Identifi- 

cation of resonances requires a line on a tuning plot, if you can’t find a line 

then it isn’t a resonance.1 The tuning width for this resonance not only de- 

pends on the general level of amplitudes but also in a complex way on the 

specific mix of horizontal and vertical amplitude. We need a practical defini- 

tion of width in order to compare two-dimensional resonance strength. 

For “resonance width” I use the tuning width for beam loss, measured 
perpendicular to the resonance line, between boundaries where a geussian 

beam - with equal (T in both planes - loses 10%. This corresponds closely to 

the value that an accelerator operator would quote, and is an adequate 
measure for assessing the difficulties of avoiding beam loss. 

Betatron oscillations can be observed by a frequency analysis of position 

monitor signals, where they appear as side-bands to the orbital frequency. 
One is tempted to continue to think in terms of frequencies using electrical 
analogies for assistance, however there is no electrical counterpart to this 

particular non-linear problem. The locking above is not related in any way to 

the “pulling” of an oscillator - the pulled oscillator keeps on oscillating, and 

it’s the linear oscillator that has no stable amplitude. The analysis of 

betatron resonances is best carried out in a time domain, that is turn-by- 

turn, and the physics of the process is particularly explicit using an ampli- 

tude-phase description of the oscillations. 
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Preliminaries 

We will examine resonances in the tunes myx t nvy = integer, m + n = k. 
These “locked” resonances are narrow bands on a tuning diagram (vx YS or) 
with R tuning width 6 ( t6/2) measured perpendicular t,o the band. You will 
find easily that the tuning relation for the band edges is 

met nvy =integer * (m2C na)@ (S/Z). 

A phase q is associated with vx, and 9 with vr. It is convenient to define 

a = rn+9 t n9, and 6, = (ml+ nzjwnb as the extra a per turn. 

At the “locking” boundaries 6, is, on the average, cancelled by additional 
phase from non-linear elements (multipoles). 

One can write the multipole fields as 

BY = R r: tbr-1 f(X,Y) - ar-I g(X,Y)l 
Er = B z [a*-1 g(X,Y) t br-1 f(X,Y)l 

(note: k-3 - hz + sextupole - 2k-pole) 

k f(X,Y) &I(X,Y) 
-__-~________--____-__________I ,---__--______-____-___ 

2: x I Y 
3 : x2 -Y2 2XY 
4 : x3-3XYZ 3XZY-Y3 
5 I X4-6X*Yz+Y4 4X3Y-4XY3 
k : (-l)n’Z(kn)(m/k)Xm-lY” : -(-1)“/2(k,) (n/k)XmYn-1 

for n=0,2,4..... and mtn=k, (%)= k!/(m!n!) I(%) 

In the generalized terms one is anticipating that m, n will become the same as 

used in the resonance expression, otherwise the terms could be simpler. 

We will want to define displacements as 

x = a cos (p, y= b cos 8, measured at B0 

(dx/dq)=x'=-a sin q, (dy/dB)= y'=-b sin 8. 

x =(&z/B.)" x, x'=h9~)" X' t (,6'/2)x etc. 

It will be convenient to use h z (flx/,&,)” a& v = (,~~/fi~)vz~ 

A kick AX‘ at ,8x must he converted to AX'=(,L?&)~*AX' 

Ax'= hBoAX'=-hBo(Bul/[Bpl), for a short length I 
Ay'= V,&AY' = V,&(Bxl/[Bp]). 
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We will want to continue to use phase-amplitude expressions because 
tune-shifts appear explicitly, so convert a small AX’ or Ay’ to 

A* = -(Ax'/a)cos 9, Aa=-(Ad/b) cos 8, 
Aa = -Ay’ sin @, Ab = -ny’ sin 9. 

For example at xmar (v=O), a small kick moves the phase back to a positive slope 

without significant change in a = (x%P)~I 

Resonance Algebra 

We must make a fundamental assumption that beam behaviour when not 

resonant can be well described by simple linear theory, that is the phase- 

amplitude equations above for x and y are meaningful. In this case the devi- 

ations caused by non-linear fields in any one turn are small, and in general 

remain small after many turns. Exceptional cases are created by components 

of the field which are resonant or which generate amplitude dependent tune- 

shifts, and in these cases small deviations accumulate for many turns. 

In the analysis below we ignore the unexceptional terms. This is necess- 

ary to obtain a solution - a simple expression predicting beam behavior - and 

it is also a reasonable approximation. It is also necessary to avoid resonence- 

crossings, tune combinations which simultaneously satisfy more than one set of 

m and n. There is no egregious beam behavior at crossing resonances but it 

is too complex for solution. This particular method of analysis is simple and 
directly t-slated to numerical evaluation , nevertheless the limitations and con- 

clusions are identical to more elegant methods. 

We first examine a simple one-dimensional resonance and then we uss the 

generalized field terms to develop solutions for the principle two-dimensional 
resonances which are more important. The simple example is contained in the 

mope general solution, and in its development we will take “simplifying” steps 

that could easily be omitted but actually mimic the two-dimensional case. 

An octupole field BY = B bJXJ with length 1 produces 

AX' =-(&~)(B.I/~BP~) 63 (ha cos (p)31 
A+'= L50B/iBpl) a2 (h'bll cos'~) 
Aa = (BOB/CBpl) aa (h*bsl cos3p sin 9) 

co& =(1/8)[cos 49 t 4~0s 29 f 31, co.+ sin ro =(1/8/Lsin 49 +Zsin 2~91 

We will make the 49 term resonant by choosing vx = integer t l/4 t 6/Z. The 29 

terms will be ignored, and the tune-shift contribution (3/8 in A@) will be 

considered later. 



We are going to examine the effects of the 4~ component of an array of 

octupole fields by observing beam behaviour at. one point in the ring for 

sucessive turns. We will now use a, (D for values at the start of a turn, and 

use ~0 t ~0s for the particle phase when it reaches a particular element. After 
one turn Aa wiJJ be the simple sum of contributions from all the elements. For 

one turn A9 will also include the normal phase advance from the tuning. 

Let me use (x for 49, aS for 4cosr 6,for 4rrS. We can express the A’s in 
terms of starting values and the following sums: 

A = (BoB//B,DII r: (h”bsl)s cos as, and B = (..I x (h’bsl)s sin as 

For one turn, at resonance, a./Zr is an integer so A and B are essentially 
Fourier components and the combined amplitude (A* + Bz)vT is independent of 
the choice of observation point. We can simplify our formulas by choosing an 
observation point where B is zero and A is a maximum (positive), then 

A9 = (l/8) A a* cos a t 90“ t 7r6/2 per turn 
OZ. Au = (l/2) A ax co6 cz t 6, 

and Aa = (l/8) A aJ sin & 

This is a good time for comments on the derivation and evaluation of the 

driving term A. 

We are assuming that non-linear “kicks” are small, and when adding the 
effect of an element to the one-turn sums we ignore previous non-linear kicks 

&he same turn when we calculate X for use in b3XJ. This is called a first- 
order solution, and it is generally sufficient for random errors. A second- 
order solution can be developed (conceptually) by adding at s terms like 
3bsX*AX to a new set of second-order sums, where AX is the first-order effect 

of multipoles between the starting point and a. Now AX already contains a 
complex dependence on ~0 t loa, so the trigonometric terms will become more 

complex and their expansion is a new set of second-order resonances. 

One can expect all sum and difference combinations of the first-order ex- 
pansions of the combined multipoles. For example, sextupoles have first-order 

terms q and 39, and second-order expansions 0, 29, 49, (69) (the driving term 
for 69 is always zero). A combination of sextupoles and octupoles will have 9, 

3$.9 . . . . 79. Significant resonances from these combinations are usually from 

systematic arrays, such as a few strong correction elements arranged to make 

undesirable first-order driving terms ZBPO, but not higher orders or inter- 
actions with other corrections. 
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It is important when computing a systematic driving term to us the real 

vaiues for ,B and ~0 that describe the ring when it is tuned to the resonance 

frequency by the actual tuning quadrupoles. One often writes 9 = us, 

$ q O+Zn but then assumes that tuning changes Y but not $. This is never 

correct for a real lattice with straight sections. In the Doubler the tuning is 
confined to the arcs, which minimizes ,5 changes, and the phase advances of 

the straight sections are almost unaffected. For very large rings it is prob- 

able that tuning will be confined to tuning cells in the straight sections. One 
must also be aware that “turning on” low beta straight sections (and restoring 
the tune) may drastically affect all driving terms. 

A last comment on driving terms - this is the time to transform A to 

sensible units. In the expression A =(8~B//Bpl)~(h”bc-~l~~ COB k@e the first 
term will normally use tesla-m in both numerator and denominator so the units 

of br-11 + A, ie (length)*-*. One should use the same unit for A and a such 
that the amplitude is close to unity, such as cm. or mm. If one persists in 
using meters then higher multipole driving terms will have huge values even 

if they are negligible. For a dipole one can write A = BoZ(hkbk-1t3)S co8 kva 
where 0 is the bend angie and in this case it is units ,& br-1 + A. 

We return to the simple 49 resonance, and having just found reasonable 

units for a, we promptly make an unecessary simplification and write a in 

terms of a new scaling unit ao, where a0 = :86,/A,‘” (without explanation, all will 

be clear for two dimensions). Let me summarize: 

YX = integer t l/4 t 6/Z 
a q 4p 6a= 4ra 

A = maximum of &.B//Bpl) Z(hcb31Js cos a3 
a.2 = :ss,/n:v2 u=a/ao 

du/dN = 6, u3 sin a N is turns 

da/dN = 6, (4u= COB a f 1) 

Locking is now quite explicit. There is no change in u or a, called fixed 
points, when u -5 and, for a-1800 (S/Z POE), or a=0 (S/2 neg). In both cases 
9 increases by exactly 900 per turn (tune = I/4) but the tuning differs by s/2. 

I now invite you to verify by differentiation, first by u and then by a, 

and using the differentials above, that for any particle 

2~’ co.3 a t 19 = constant 
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This kind of expression is known as R constant of the motion, for our pur- 

poses however it is the trajectory in phase space which a particle will follow. 

It can be easily converted to lines on H x/a0 vs x’/ao diagram. Solving a 

resonance problem means finding a constant of the motion, and many problems 
apparently do not have n simple algebraic solution. All solutions in this paper 

have been found by the good-guess-and-teat process (as in integration). 

The most significant trajectory is the one containing the fixed-points. 

For positive 6 one inserts u = .5 and cos a = -1 to find 

2~’ cos a t t12 = l/8 

which is known as the equation of the seperatrix. In figure 1 this equation 

is plotted as solid lines on an x/a,, ~‘/a/80 diagram - 

hyperbolas with fixed-points at the intersections. 

Dotted lines represent other trajectories, with 
the dots indicating turns starting from the x-axis. 

For each value of cos a there are four values for 9, 

and hence a four-fold symmetry with successive 

turns moving from quadrant to quadrant clockwise. 

All outside particles (const.>l/8) are swept out 

along one of the four-fold separatrices and are lost. 

Particles inside (<l/8) are stable. The co8 a term is 
fig. 1 1/4’s remnance 

not significant for a small constant, and the equation reduces to its normal 

form a2 q const., as seen in the inner trajectory. 

Consider how R fixed-point particle moves on the phase diagram 88 one 
follows it around the ring. As usual it will rotate clockwise many times but in 

this case the net phase advance after one turn is exactly 90°, precisely closing 

in four turns. The whole phase diagram rotates with the fixed-point in a 

Moebius rope which seems to be woven from four strands but actually is only 

O”f3. When we chose the observation point so as to eliminate B we simply 

chose a particular orientation of the diagram (with simpler formulas). 

The strength of the resonance is given by the driving term A. To con- 

vert this to a tuning width it is necessary to multiply A by some amplitude 

squared. The usual choice is the fixed-point amplitude, thus 

LIZ ~2.5 - a2 =.25(32n6/A) or 6 ~125 al A/rr 

and to arbritrarily set the fixed point amplitude a to 1 cm. This definition 

ignores the normal tuning procees and is not useful for two-dimensional 

rf?SO”*“CeS. 
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A better choice for the (amp)* is iii, averaged over a, which when 

multiplied by TT is the area inside the separatrix, thus for our case 

3 ~1043 - 3 =. 1043(32n6/A) or 6 ~223 <a>= A/n 

Consider R disk of particles in phase space with maximum amplitude <a> and a 

uniform density, and at a tune well above resonance - the amplitude for the 

fixed-points is at least several times <a>. On tuning slowly down to the 

resonance, the separatrix squeezes down onto the beam, distorting the shape, 
and at 6/Z the beam will fill the separatrix (it keeps the same uniform 

density, that’s Liouvilles theorem). Further tuning causes beam loss. If we 
start below the resonance and tune up, the same conditon is found at -6/Z. 

This 6 is an adiabatic tuning width for a remote amplitude <a>, and it is 

conceptually more satisfying because the tuning process, which is essential to 

any definition, is explicit. Let me extend this further by assuming that the 

remote beam has n gaussian density distribution given by P measured at PO. 

I now choose the amplitude containing 90% of the beam as <a>, in other words 

I define the tuning width as 6 for 10% loss points, then 

<a>2 = 4.605 d and 6 = 1.026 u2 A/m. 

This definition, with some numerical effort, can be used for all resonances. 

Closed Resonances 

The resonance we have been considering is called open because the arms 

of the separatrix extend beyond the vacuum chamber (infinity). Most resonen- 
ces however are closed and the arms are joined. This is caused by the in- 

evitable dependence of tune on amplitude. I” general 

AVI = f(a*, b’, s’, sab? b’ . . . . . I 

and, yes, YI does depend on the y amplitude. The coefficients in this 

polynomial have either sign, are not particularly correlated, and come from 

many sources - including beam-beam interaction. 

As an example we continue with the same 49 resonance but add a term 

Avr z-C a* and define c = lGnC/A 
then ds/dN = (l/8) A s3 sin a as before 

but da/dN = (l/2) A sz (COS a - c) t 6, 

and (A/46,) a’ (co6 a - c) t a2 = con&. 
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When c is greater than 1, both the a ~0 and (1-180” fixed-points are at 
positive 6, and there are none for negative 6, however only 1800 has a 
separetrix. Figure 2 is drawn for c = 3. The four- A.5 
Fold “island” is relativeiy smaller for larger c. 

Because of the tune-shift, ;ln adiabatic amplitude 

fills the inside at a 6/Z t,hat is larger than before. 

Further tuning towards l/4 moves some part- 

icles into the island, and they may be lost because 
the peak amplitude is too large. Particles of 

initially small amplitude - at tuning close to l/4 - 
suffer the same relative increase and will be stable. 

The island is not “filled” with beam, (in fact 
fig. 2 closed by cr3 

for an infinitely slow tuning particles move directly to the outside), and the 
process of entering and leaving is complex. An initially uniform density disk, 

tuned thru a closed resonance, will have a distorted boundary and an effec- 

tive phase dilution. 

In general the effect of amplitude-dependent tune-shift on the low multi- 

pole resonances is to make them wide - particularly when ws include the b 
dependence - and effective only on larger amplitudes. High multipole reso- 

nances have much smaller driving terms, but see the same tune-shift and so 
have narrow closed islands which have little effect. This is why the beam is 

stable in spite of an apparently overwhelming number of resonances. As a 
pain-killer, however, tune-shift has bad side effects - see Distortion 

Functions - and cannot be used to alleviate poor magnet quality. 

The significant strength parameter for a closed resonance is t.he area of 
the island compared to the area inside the separatrix. Some authors do ex- 
press the strength in terms of “tune width”, but there are no missing tunes 
and it is difPicult to find a simple tuning width which is relevant. The 
particular example above is unique in that A and C have the same dimensions, 

and can be combined in a single amplitude dependence. 

Some Other Solutions 

Consider the 10-pole. It is no suprise that one will expand 

(cos $!7)5 = (1/16)(cos 59 t scos 30 t 1ocos g), 

but it may be a suprise that the IO-pole will probably have 1/3’s resonances 
which are five times wider than its “principle” 1/5’s resonances! The sextu- 
pole resonances at the same tunes are probably larger, but not necessarily. 
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One can find a solution for combinations of multipoles contributing to a 

single resonance, for example the constant of the motion at l/3 is 

(l/28,)[(A3aJt (3/4)AsaS+..)cos 3q - (Bsa3 t (3/4)B&t..)sin 391 t a* 

where the simple term AaJ is now replaced by polynomials (one can eliminate 83 

by shifting, but that is all). As long as the polynomials are monotonic there is 

little change in the character of the resonance, but if they have roots, or 
multiple roots, then there are multiple sets of fixed-points and separatrices. 

If you, too, are addicted to recreational computation you will enjoy displaying 
some of these pretty resonance diagrams. 

Another type of solution can be found for exactly superimposed reso- 

nances where one is a simple multiple of the other, for example in the octupole 

case when the tune is Z/4 then both 49 and 29 in the expansion become 
resonant (with different driving terms). In this case the constant of the 

motion contains both angles. Again one finds some very interesting diagrams. 

There is a process called feeddown which comes from a closed orbit 

displacement in the multipole element - from orbit distortion, momentum dis 

placement or physical misalignment of the element. Expanding (X t d). one 
finds Xs t m d X.1.. which creates feeddown to lower multipoles. (Vertical 
displacement in normal multipoles generates skews, and vice-versa.) For 
random multipoles these contributions can be large and explain the restricted 

momentum aperture and the emphasis on closed orbit control. For systematic 

elements feeddown caused by orbit distortion can produce unexpected huge 
effects, which I call semi-systematic resonances. 

An orbit distortion may arise from a random set of dipole errors but the 

distortion itself is not random. The Fourier analysis of a random variable 
around the ring would probably have equal strength in all harmonics. The 
distorted orbit is dominated by one, or at most two harmonics at the nearest 

integers to the tune. A systematic array of multipoles will have its own 

harmonic structure at mutiples of the basic phase symmetry. Feeddown 
driving terms for k-l resonances will be strong at the sums and differences 
of the orbit and multipole harmonics, which are normally terms that one 
would expect to be suppressed by the symmetry. Semi-systematic resonances 

within the normal tuning range must be avoided. 

One sometimes hears speakers say that they have measured a resonance 

width, and using “so-and-so’s” formula calculated an improbable multipole 

strength, implying that resonance theory is inadequate. Of course one cannot 
work backwards from tune to source multipole without many measurements; 

worse yet is to apply one-dimensional formulas to two-dimensional resonances, 
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Two-Dimensional Resonance 

The analysis of two-dimensional resonances is put-e drudgery. Gone are 
the pretty diagrams, they are hidden in a four-dimensioned phase space. In 

fact, short of blowing-up the beam it is difficult to detect the resonance - 
simultaneous plots of x, x’ and y, y’ are not helpful, just smeared - and the 

best one can offer is a simple plot of a vs b. 

Each resonance, in its own way, defines “family” lines on an a, b plot 

(hyperbolas or ellipses) and each particle is assigned to a particular family 
according to its values of a and b, and remains on that line. For each family 

there is a single variable giving the position along the line and a “one- 
dimensional” resonance complete with fixed-points and separatrices. S0ml? 
family members are stable, some are not, and all considerations of tune-shift, 

polynomial driving terms and superimposed resonances apply. The arithmetic 

is obviously messy but the real drudgery is that each family is different and 

the problem must be solved many times over. 

Nevertheless two-dimensional resosnances are more numerous and much 

stronger than their one-dimensional relatives. We will demonstrate this by 

devising and evaluating a suitable expression for the width of the principle 
resonances, 

In the expression m f n = k, if m and k have the same parity then the 

resonance is from normal multipoles, b*-1, otherwise it is from skew multipoles, 

al-l. We illustrate the meaning of principle from the normal octupole 

By= -B 3bJXY’ and BG B 3bzX2Y 

which, as I am sure you can now easily see, involve the following 

Aq?,A& + co+,? cosGJ = (co6 2gt28 t COB 29-26 t 2~06 2+7 t 2Cos 28 t 2)/8 
de * sin g co8 9 co.&9 = (sin 2@28 t Sin &o-28 t 2sin &0)/8 

Ab + coszq sin 9 cos 9 = (sin 2+2# - Sin 29-28 t 2sin 2S)/8 

The principle resonance is the first sum term. The difference terms are a 
kind of non-linear coupling which is of practical importance for beam dis- 
tortion (vx near vr), but in principle does not blow-up the beam. Notice that 

there is a contribution to the tune-shift polynomial, a b* term for YI and 

vice-versa, but we will ignore tune-shift. The remaining terms are presumed 

to be non-resonant at the principle tune. In other words, we are going to 
keep it simple. 
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We now use the general expressions for the fields (for brr-1) 

By= B (-l)a’z (%)(m/k) bk-1 X’-’ Y” 
Br= -B (-I)‘/= (%)(n/k) br-1 Xm Y”-1 

and, as before, we find AX, my; then ae, Aq, Ab, Ati; and expand saving the 

first term, with the angle called a. Again we separate starting angles from 

phase advance in the turn and collect a drivng term A which is set to a 

positive maximum by the choice of observation point. 

In this case we will express a, b and everything else, except A and (T, in 
units scaled by an a0 which will collect the nuisance constants. In summery 

mvXt nvY = integer ts/2, m t n = k, 6 perp. to i-es. line, 

a = m+9 t na, 8, = (mztn*)“~7rS 

A q (-Ip’* (B~J,/[B~~) ~:(hmvnbk-ll)a ~06 aa mm. 
(a~)*-~ = (2*-1/(%4)G,/A = (2k-~/(k~))(mztnz)v~n6/A 

da/dN = a,(m/k) a’-lbn sin a 
db/dN = &(n/k) amb’-l sin a 
dcc/dN = &.(1/k) [(m%P-zbn + n%Pb’J-1)co.s a + k] 

I. na*- mb’ = F the “F” family line 
II. m’ am+’ + n2 @b’-2 = k the fixed-noint line (a = 1800) 

III. Za.b’L co8 a t a2 = constant of motion. 

Expression I comes from the combination of da/dN and db/dN, and is an 
hyperbola. Every particle belongs to a family and, even if it blows-up, it 
cannot leave the family line. [For 29-28 the sign of db/dN is changed and 

na* t mb2 = F, which is an ellipse, so the amplitudes ape bounded. It can be an 

elongated ellipse. j 

The line of fixed-points in expression II has a wide variety of shapes for 
different resonances. The fixed-point amplitude pair, a,b, for a particular 

particle is the intersection with its family line. Substitution of these values 

and cos a = -1 in III gives the constant of motion for the family. One can 

then solve for the minimum amplitude pair using COB a = 0, but one must use 

(I) to eliminate a or b first to remain on the family line. 

In a similar manner one can find (azb*) averati~., over a, which is related to 

the phase-space volume, and is the adiabatic “amplitude” far from resonance 
which just fills the separatrix at 6/Z. The family relation must be maintained. 

Please see the example on page 16. 
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It is apparent that we must use some standard distribution of beam 

among the families in order to reduce the adiabatic line to a single msasure of 
tuning width. I will use a gaussian beam with the same c in both planes. 

The amplitude distribution for one plane is a Rayleigh, or circular normal 

P(a) = (a/d) exp-a’/ZU* de 
OF P(O+a) = 1 - exp-al/202 integrated 

For two planes with the same c we have the folding of two circular normals 

P(a,b) = @b/u”) exp-(a’tbz)/Zcr* da db 

Or P(a*,b*) = (l/4&) exp-(.s%b’)/Za~ d(az) d(bp) 

If one writes r-2 = aztbz then the cummulative distribution 

P(OM.1 = 1 - (1 t r~/Za~)~exp-r*/Zo~ 

For our scaled values we must replace ,Y in the above by a/so. 

I define the tuning width as the difference between 10% loss points when 

tuning perpendicular to the resonance. To find this width one first finds the 

adiabatic amplitudes for many values of F, then guesses a value for u/a. and 

numerically integrates the distribution function to find how much of the beam 

is below the adiabatic line (expressed as aP,ba), and adjusts o/a. until the 

value is 90%. 

Let [c/a.l.s =.o, and 6 = WC+-~ A/s 
intrinsic width w = (l/p!-) (l/2+1) (*.)/(m=tn=)“. 

This calculation is illustrated by the lower diagram for the example on page 
16, where I have superimposed the final cummulative rl distribution. You can 

see which families cause most of the loss for this particular resonance. 

On the next page there is a summary table of W’s, which shows that rea- 

onsnces near m = n are much the most important. The primary factor is the 

binomial coefficient (%) from the multipole expansion. 

The comparison of tuning widths between different values of k involves 

the relative magnitude of multipoles. For random errors in the Doubler, and 

for a beam with Q = J cm. (large!), one can expect A&-? to probably fall by a 
factor of 15 for two steps in k. For m = n, W rises by 3 for two steps, so the 

probable widths fall fairly rapidly with increasing k. For systematic errors 

there is no prediction. 

The comparison of tuning widths for different m,n with the same k in- 

volves only W and hmvn = (fix’/2 +QYrJz/flO). For multipole elements installed near 

quadrupoles, the latter term is 1 for one-dimensional resonances and 



(.76)k (60° cells) or (.64jk (90° cells) for resonances with m = n = k/2. This 
somewhat mitigates the rise in W but it introduces a dependence on the choice 

of the phase advance for the cell. 

For random errors one must use the rms. average over the cell. This 
has been combined with W in the curves on page 18. Each curve is normal- 
ized to the probable width for the one-dimensional resonances. The original 
purpose of these curves was to convince designers that high phase advance 

per cell, which costs very little extra, substantially reduces resonance 

problems. They do show that two-dimensional resonances are dominant. 

Final Comments 

One can never expect to measure widths as given above. As we have 
seen real resonances are combinations and include tune shifts, polynomial 

driving terms and overlapped resonances. This does not invalidate the basic 
conclusions because the causes - binomial coeficients and /? dependence - are 

so fundamental. It is true that the auantitative relation between resonances 

end good accelerator performance is not obvious, and this led me to non- 
resonant Distortion Functions and to the “smearing” criterion which reaches 

the same general conclusion quantitatively. Nevertheless there are a number 

of reasons why one should be very familiar with the theory of resonances. 

Resonances large enough to be annoying in a ring with an adequately low 

distortion are most probably from some overlooked systematic multipole effect, 
particularly if they appear during low-beta turn-on which destroys phase 
symmetry. Except that the resonance is probably two-dimensional, there is no 

probability theory for goofs and one must understand all the simple and 

subtle ways that could produce the particular resonant frequency. The con- 
verse applies to the goof-free design of new multipole elements for the ring. 

The design of intentional resonances is the real fun. Slow extraction 
uses a designed resonance but there must be many more applications, parti- 

cularly in a rational ring like the Doubler end with today’s superconducting 

higher multipoles. As an example consider a “separatrix” beam scraper to 

remove large betatron amplitudes. A strong amplitude dependence will sup- 

press momentum problems - so how about lo-poles, used at 1/3’s for increased 

strength, and in two-dimensions because that’s what we should scrape, and 
maybe a little non-linear coupling, and perhaps we should tailor the tune-shift 

function, and . . . but don’t let me design it - you design it. 



noton CsnstToLned co 

F= a!-t!b'. 

,,ed /,t3, 4b=+9$5=5 

a 3_~pJ3Cmdo*~~~rcmt, 

@kcAs pi 5tob.L pJlLL 

9 F i +m && ‘F~Kp.1 vt’: 

!Q 0 L.Mo ?&ip’,tLcy~ 

t$ A4.d ‘&1<2 Fb?.%& 5@ 
b 

AlJN. . 

Ro::.,ir a- OF 

i \5*me. ~c’~~c i e* i \ 

<C i,;‘; :.-j beyd 

FlrdP. ‘_: th t 7. 

Fe 3% 2@ 
‘7. \ 

K 6 

‘r- 1’. A$- 5. ,*.$; 

x 5 
a $ 

s, 

I y/-~ _( Jo51 57P6i’; MmIoN 

+A.. 
I ’ cl 

\ / 1 +unc 512 

OV L --+. --_ 
0 

CL- I 

-2 
Fee FFLOM RE~oNGNCE 

--- Qm, ;!m,t Fm dda\i.t~.& 

,u~,hen ‘h-ad to E/a. 

4ame at, a’b’w. %boue 

‘il. ’ 
‘\ 

\_ _ \ 

k 
,y,‘, _, 2. 

‘7 ’ 

\ 

\,‘. 

xi 
\ ,~ 4 

-- , F=5 
% 

-\ 

_~.__‘J-.:.:- ~- 
----- -* _ 

--.. 
.~,.. .~,..-~~ ~. ~.~ 

- -t 6= 5.38 R cr3/Tr 



17 

T sNTfi.:N5’C W,>-,-H b, FOE RE.ES?NRNCE~ m’ y+ y, 3 

I ‘3T i 3 -> !055. %=ur+a 

.Y.? 
&wJt~~ bvw ,fyL ,p.$. i &, $Q:;~,,?,& 0. ;A - \ \iO%‘L .nyr, -f-’ ! p:o I 

!O%&n> ~ 
I 

‘x 
.+Y b J, 

6 = l&j p:‘+~: ‘~W> T ,l p ,) 

1-h 
w+ 

al 

.83 (3.11 11.4 (30) 

- m=n 



R E5ONQNCE WIDTHS Vs. %HE RWR+JCE ICELL, 

Fnearl,*- l&d&D aAL PJz!aJid tr 1 &u ovn-.LiLw3Mb. Lt ?O” 

*iLLdcwezhmn. /&a 0-4 

1 
10 

t k=S !’ i G- 6 

I < 
‘SO 10 Sk k-- ’ ,b ’ & j ;o ’ ,b ’ 9i.J 

30t 30 

k= 8 

2Q- 

30 

k= \O 

I 


